The value of proton magnetic resonance spectroscopy in assessing liver lipid and glucose metabolism alternations in rabbits with acute liver injury
Guan Jitian1,2, You Kezeng1,3, Geng Yiqun4, Sun Shuyi1, Lai Lingfeng1, Shen Zhiwei1,2, Zhang Xiaolei1,2, Zhou Teng5, Huang Huaidong1, Yang Lin1, Cheng Yan1, Wu Shuohua1, Zhao Zhihong1, Zhuang Caiyu1, Wu Renhua1,2.
1Department of Radiology, 2Department of Medical Imaging Center, the Second Affiliated Hospital of Medical College of Shantou University, Shantou 515041, China; 3Department of Imaging Center, the Linyi Central Hospital, Linyi 276400, China; 4Laboratory of Molecular Pathology, 5Department of Computer Science, Medical College of Shantou University, Shantou 515000, China
Abstract:ObjectiveTo investigate the value of proton magnetic resonance spectroscopy (1H-MRS) in assessing liver lipid and glucose metabolism alterations in a rabbit model of acute liver injury. MethodsTwenty healthy adult male New Zealand white rabbits were randomly divided into a control group (n=10) and an experimental group (n=10). The control group received intraperitoneal injection of normal saline (1ml/kg), while the experimental group received intraperitoneal injection of sodium selenite (1ml/kg) to establish an acute liver injury model. After 48 hours, the 1.5T magnetic resonance system was used to scan the live rabbit liver using a single-voxel point resolved spectroscopy sequence. LCModel software was employed to calculate the relative peaks of lipid, glycogen and glucose complex (Glyu), and choline-containing compounds (CCC) with water, and the levels of aspartate aminotransferase (AST) and alanine aminotransferase (ALT) in rabbit serum were measured. Comparisons between the 2 groups were performed using t-tests. The rabbit liver specimens were stained with hematoxylin and eosin (HE) to observe pathological changes in liver tissues. ResultsNineteen animals ultimately completed the experimental process, with 9 in the experimental group and 10 in the control group. Compared to the control group, the experimental group showed significantly increased levels of lipid 13/lipid 09 (5.21±1.83, 7.17±2.56) and lipid 13/(lipid 21+lipid 23) (6.52±0.82, 7.35±2.33), while the levels of Glyu [(0.22±0.15)×10-2, (0.15±0.06)×10-2] and CCC [(0.09±0.03)×10-2, (0.07±0.03)×10-2] significantly decreased, all with statistically significant differences (t=-2.31, -2.88, 2.42, 2.12, all P<0.05). Serum AST [(433.79±140.19)U/L, (46.51±17.71)U/L] and ALT [(779.67±149.54)U/L, 69.44±20.79)U/L] levels in the experimental group and control group were also significantly elevated (t=5.46, 13.92, all P<0.05). The livers in the experimental group displayed pathological changes acute diffuse liver injury, such as destruction of the liver lobule structure and necrosis of liver cells. ConclusionsSodium selenite can effectively induced acute liver injury in the rabbit model. 1H-MRS technology is proved to be a valuable tool for evaluating the metabolic of lipid and glucose associated with acute liver injury, offering a novel perspective for clinical non-invasive diagnostic strategies.
[1]Stine JG,Lewis JH.Current and future directions in the treatment and prevention of drug-induced liver injury:a systematic review[J].Expert Rev Gastroenterol Hepatol,2016,10(4):517-536.DOI:10.1586/17474124.2016.1127756.
[2]Chayanupatkul M, Schiano TD. Acute liver failure secondary to drug-induced liver injury[J].Clin Liver Dis,2020,24(1):75-87.DOI:10.1016/j.cld.2019.09.005.
[3]Whitfield JB, Masson S, Liangpunsakul S, et al. Evaluation of laboratory tests for cirrhosis and for alcohol use,in the context of alcoholic cirrhosis[J].Alcohol,2018(66):1-7.DOI:10.1016/j.alcohol.2017.07.006.
[4]Spallholz JE.On the nature of selenium toxicity and carcinostatic activity[J].Free Radic Biol Med,1994,17(1):45-64.DOI:10.1016/0891-5849(94)90007-8.
[5]Siegelman ES,Rosen MA.Imaging of hepatic steatosis[J].Semin Liver Dis,2001,21(1):71-80.DOI:10.1055/s-2001-12930.
[6]Choi SJ,Kim SM,Kim YS,et al.Magnetic resonance-based assessments better capture pathophysiologic profiles and progression in nonalcoholic fatty liver disease[J].Diabetes Metab J,2021,45(5):739-752.DOI:10.4093/dmj.2020.0137.
[7]Weerasekera A, Sima DM, Dresselaers T, et al. Non-invasive assessment of disease progression and neuroprotective effects of dietary coconut oil supplementation in the ALS SOD1(G93A) mouse model:a (1)H-magnetic resonance spectroscopic study[J].Neuroimage Clin,2018(20):1092-1105.DOI:10.1016/j.nicl.2018.09.011.
[8]Dezortova M, Taimr P, Skoch A, et al. Etiology and functional status of liver cirrhosis by 31P MR spectroscopy[J].World J Gastroenterol,2005,11(44):6926-6931.DOI:10.3748/wjg.v11.i44.6926.
[9]Smith B,Johnson R,Williams C,et al.Unraveling the glycogen synthesis pathway using 13C nuclear magnetic resonance analysis:a contemporary approach[J].Metabolism,2021(110):154394.DOI:10.1016/j.metabol.2020.154394.
[10]Keshavan MS,Stanley JA,Montrose DM,et al.Prefrontal membrane phospholipid metabolism of child and adolescent offspring at risk for schizophrenia or schizoaffective disorder:an in vivo 31P MRS study[J].Mol Psychiatry,2003,8(3):316-323,251.DOI:10.1038/sj.mp.4001325.
[11] Wang L,Zhang Y,Chen H,et al.In vivo proton magnetic resonance spectroscopy of hepatic ischemia/reperfusion injury in a rat model:insights from a longitudinal study[J].Magn Reson Imaging,2024(59):54-61.DOI:10.1016/j.mri.2023.09.012.
[12]Marjańska M,Terpstra M.Influence of fitting approaches in LCModel on MRS quantification focusing on age-specific macromolecules and the spline baseline[J].NMR Biomed,2021,34(5):e4197.DOI:10.1002/nbm.4197.
[13]Takanashi J,Somazawa F,Maruyama K,et al.Metabolic changes in early childhood using LCModel with corrected water scaling method[J].J Magn Reson Imaging,2012,35(1):174-180.DOI:10.1002/jmri.22802.
[14] Li T,Zhang H,Yuan X,et al.Lipid metabolism in cancer cells:novel insights from proton nuclear magnetic resonance spectroscopy[J].Trends Biochem Sci,2023,48(5):411-421.DOI:10.1016/j.tibs.2023.02.004.
[15]Orphanidou-Vlachou E,Kohe SE,Brundler MA,et al.Metabolite levels in paediatric brain tumours correlate with histological features[J].Pathobiology,2018,85(3):157-168.DOI:10.1159/000458423.
[16]Arlauckas SP,Browning EA,Poptani H,et al.Imaging of cancer lipid metabolism in response to therapy[J].NMR Biomed,2019,32(10):e4070.DOI:10.1002/nbm.4070.
[17]Romanska HM, Tiziani S, Howe RC, et al. Nuclear magnetic resonance detects phosphoinositide 3-kinase/Akt-independent traits common to pluripotent murine embryonic stem cells and their malignant counterparts[J].Neoplasia,2009,11(12):1301-1308.DOI:10.1593/neo.09850.
[18]Carballeira NM,Montano N,Amador LA,et al.Novel very long-chain α-methoxylated δ5,9 fatty acids from the sponge asteropus niger are effective inhibitors of topoisomerases IB[J].Lipids,2016,51(2):245-256.DOI:10.1007/s11745-015-4114-9.
[19]Corbin IR,Furth EE,Pickup S,et al.In vivo assessment of hepatic triglycerides in murine non-alcoholic fatty liver disease using magnetic resonance spectroscopy[J].Biochim Biophys Acta,2009,1791(8):757-763.DOI:10.1016/j.bbalip.2009.02.014.
[20]Cai C,Wu Y,Yang L,et al.Sodium selenite attenuates balloon injury-induced and monocrotaline-induced vascular remodeling in rats[J].Front Pharmacol,2021 (12):618493.DOI:10.3389/fphar.2021.618493.
[21]Reischauer C,Hock A,Kolokythas O,et al.Fully navigated 3 T proton magnetic resonance spectroscopy of liver metastases with inner-volume saturation[J].Abdom Radiol (NY),2017,42(11):2615-2622.DOI:10.1007/s00261-017-1173-9.
[22]Harper DG, Plante DT, Jensen JE, et al. Energetic and cell membrane metabolic products in patients with primary insomnia:a 31-phosphorus magnetic resonance spectroscopy study at 4 tesla[J].Sleep,2013,36(4):493-500.doi:10.5665/sleep.2530.
[23]Brando LA,Castillo M.Adult brain tumors:clinical applications of magnetic resonance spectroscopy[J].Magn Reson Imaging Clin N Am,2016,24(4):781-809.DOI:10.1016/j.mric.2016.07.005.
[24]Zarifi M,Tzika AA.Proton MRS imaging in pediatric brain tumors[J].Pediatr Radiol,2016,46(7):952-962.DOI:10.1007/s00247-016-3547-5.
[25]Vladimirov N, Perlman O. Molecular MRI-based monitoring of cancer immunotherapy treatment response[J].Int J Mol Sci,2023,24(4):3151.DOI:10.3390/ijms24043151.
[26]Kim S,Lee H,Park E,et al.In vivo 1H MR spectroscopic imaging of phospholipase-mediated membrane lipid release in apoptotic glioma:a translational study[J].Neuro Oncol,2023,25(4):582-591.DOI:10.1093/neuonc/noab045.
[27]Cao Z,Wu LP,Li YX,et al.Change of choline compounds in sodium selenite-induced apoptosis of rats used as quantitative analysis by in vitro 9.4T MR spectroscopy[J].World J Gastroenterol,2008,14(24):3891-3896.DOI:10.3748/wjg.14.3891.
[28]Shen ZW,Cao Z,You KZ,et al.Quantification of choline concentration following liver cell apoptosis using 1H magnetic resonance spectroscopy[J].World J Gastroenterol,2012,18(10):1130-1136.DOI:10.3748/wjg.v18.i10.1130.
[29]Alnahdi A,John A,Raza H.Augmentation of glucotoxicity,oxidative stress,apoptosis and mitochondrial dysfunction in HepG2 cells by palmitic acid[J].Nutrients,2019,11(9):1979.DOI:10.3390/nu11091979.
[30]Pasanta D,Htun KT,Pan J,et al.Magnetic resonance spectroscopy of hepatic fat from fundamental to clinical applications[J].Diagnostics (Basel),2021,11(5):842.DOI:10.3390/diagnostics11050842.
[31]Morita SY,Tsuji T,Terada T.Protocols for enzymatic fluorometric assays to quantify phospholipid classes[J].Int J Mol Sci,2020,21(3):1032.DOI:10.3390/ijms21031032.